Research Laboratory
Re-Entry Plan

Harvard University
May 14, 2020
Research Laboratory Re-Entry Plan

Harvard University
Laboratory Reopening Planning Committee

May 14, 2020

Table of Contents

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>1</td>
</tr>
<tr>
<td>Core principles for on-campus research</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Societal context and risk management</td>
<td>3</td>
</tr>
<tr>
<td>Individual responsibilities</td>
<td>3</td>
</tr>
<tr>
<td>Staged ramp-up</td>
<td>3</td>
</tr>
<tr>
<td>A PI-driven approach, with oversight</td>
<td>4</td>
</tr>
<tr>
<td>Culture of safety</td>
<td>4</td>
</tr>
<tr>
<td>Rationale and specific guidelines</td>
<td>4</td>
</tr>
<tr>
<td>Self-evaluation for COVID-19 symptoms</td>
<td></td>
</tr>
<tr>
<td>Viral and Serological testing</td>
<td></td>
</tr>
<tr>
<td>Protective face coverings</td>
<td></td>
</tr>
<tr>
<td>Density and distance guidelines</td>
<td></td>
</tr>
<tr>
<td>Constraint of social contacts through shift work</td>
<td></td>
</tr>
<tr>
<td>Enhanced facilities maintenance</td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td>7</td>
</tr>
<tr>
<td>Occupational Health Services</td>
<td>8</td>
</tr>
</tbody>
</table>

Appendices

- **Appendix 1:** Harvard University Laboratory Reopening Planning Committee 9
- **Appendix 2:** References and Helpful Resources 12
- **Appendix 3:** University Principal Investigator Lab Re-entry List 13
- **Appendix 4:** University PI Lab Re-Occupancy Planning Form 15
- **Appendix 5:** Guidance for Human Subject Research 21
Research Laboratory Re-Entry Plan

Harvard University Laboratory Reopening Planning Committee

May 14, 2020

Preamble

This document is meant to establish clear and consistent guiding principles for the conduct of research in the era of COVID-19, to define operational protocols and precautions that minimize risk of viral transmission in a laboratory/research environment, and to provide examples of how the physical and temporal space of laboratories might be organized to enact these protocols in accord with these principles.

This report draws on the collective wisdom of experts in epidemiology, virology, public health, and emergency preparedness, as well as highly experienced research investigators and senior research officers, heads of hospitals and research institutions, and research building operations and facilities managers. We have benchmarked and compared our plan with those of many of leading universities and hospitals in the U.S., and our plan is in line with best practices.

The protocols and proposed guidance provided in this document also have been informed by, and are consistent with, the experience of Harvard hospital and health care workers and of essential research personnel in these settings who have continued to carry on COVID-related research programs while other laboratories ramped down. It is notable that adherence to the practices of social distancing, universal masking, and attentive avoidance and disinfection of surfaces has been highly successful in suppressing workplace transmission in these settings, despite the fact that they almost certainly represent higher risk environments due to the close proximity of COVID-19 patients. Thus, it is reasonable to expect that the rigorous adoption of these same precautions, which are already familiar to most research staff and have been demonstrated as effective in related research settings, will likewise prove effective in preventing workplace transmission and safeguarding the health of personnel returning to Harvard’s research labs.

Core principles for staged ramp-up of on-campus research at Harvard

- At this time, use of on-campus research space should be limited to those activities that cannot successfully be done remotely.
- Individuals should access only those areas of campus buildings that are necessary to do their work.
- On-campus research should be organized/prioritized to limit person density and simplify personal interaction networks while maintaining personal safety.
- On-campus researchers should adopt “universal precautions” designed to mitigate the risk of viral transmission, including frequent handwashing, physical distancing, proper use of University-issued or -approved masks, avoidance of contact with high-touch surfaces, and attention to surface and equipment disinfection protocols.
- Explicit training on implementing these practices should be provided and demonstration of proficiency required prior to lab re-entry.

1 Committee members are listed in Appendix 1.
Introduction

With the spread of the COVID-19 pandemic, many communities and institutions took steps to reduce the spread of infection by promoting social distancing and aggressively limiting the number and size of gatherings. We now need to plan for the staged resumption of lab research on campus, with an eye towards returning to work as prudently and safely as possible. This document provides a road map for achieving that goal.

We present guidance for institutional actions prior to ramp-up, as well as guidance for principal investigators (PIs) and research groups to help them develop lab-specific plans based on the needs of the program, the nature of the work, and the layout of facilities. **This guidance will be continuously reviewed and may be revised as new information and effective COVID-19 treatment and prevention options emerge.**

The measures for ramp-up of lab and research activities outlined in this document aim to protect to the greatest extent practicable (i) individuals working in the labs (i.e., students, postdoctoral fellows, faculty, and staff), and (ii) individuals authorized to be on campus to support this community (i.e., staff, vendors, shipping/delivery personnel). We expect all individuals working on campus to adopt “universal precautions” designed to mitigate the risk of viral transmission. We expect lab groups and departments to take steps to reduce the occupancy density of campus buildings and rooms (to the greatest extent practicable while maintaining personal safety) and to limit person-to-person contact within our facilities.

The development of this plan is based on the following guiding principles:

- Our highest priority is to support community health and well-being.
- We will sustain the excellence of Harvard in both teaching and research.
- We will adopt an evidence-based risk management approach to the COVID-19 challenge, and our decisions will be guided by public officials and health experts.
- We will clearly communicate our policies and decision-making processes as they change over time, acknowledging that we are facing considerable uncertainty.

The resumption of on-campus research will occur in phases with timing based on governmental policies and the state of the disease, the health care system, and society at large. Research groups will need to develop and implement a coordinated and flexible plan for phased re-entry and to prepare for the possible short-notice quarantine of an individual or teams of individuals within the lab groups.

These guidelines have been developed by the Harvard University Laboratory Reopening Committee, the HMS/HSDM/Harvard Chan Lab Ramp-Up Committee, the FAS Dean of Science and Dean of SEAS, and in coordination and consultation with Harvard Schools and affiliated hospitals. This document aims to assist Schools, departments, and PIs with the development and implementation of School-specific plans and to ensure consistency across our University community. The School representatives have adopted the plan and their School-specific templates to be used for PI-specific plans are attached in the appendices. These templates were reviewed and approved by the Office of the Vice Provost for Research (OVPR) in consultation with the Committee. The individual PI plans will be reviewed by the Schools in coordination with the OVPR to ensure alignment with University-level guidelines.
Societal context and risk management

Our Schools are embedded in the greater Boston metropolitan area, and we are intimately linked to this region. We anticipate that once governmental restrictions are lifted, instances of infection will be detected within the Harvard community. This plan is designed to (i) keep the SARS-CoV-2 infection risk to individuals who conduct and support research at a level no greater than what they encounter in typical life off campus, and (ii) minimize the spread of any SARS-CoV-2 infection that may occur within the Harvard community.

The prerequisites for a resumption of research on campus include:

1. The local health care system has sufficient capacity to handle both COVID-19 cases and routine health care needs. We presume this assessment will be conducted by government officials.
2. The Commonwealth of Massachusetts permits lab re-entry. We presume this assessment will be conducted by government officials.
3. Adequate University-authorized masks and personal protective equipment (PPE) are accessible and available without compromising their availability to health care workers. This assessment will be conducted by Harvard’s Environmental Health and Safety (EH&S) offices.

Parts of the University are currently operating as an essential business under restricted-access protocols. However, because of the need for de-densification, some proposed activities are not currently being pursued or are being conducted remotely.

Individual responsibilities

To be permitted to enter laboratory areas, individuals must:

1. Complete COVID-19 training relevant for one’s access.
2. Comply with occupational health policies regarding reporting and contact-tracing of individuals with any COVID-19 symptoms or test-confirmed diagnosis.
3. Comply with the safety measures defined in the approved plan specific to their research group and with School policies on face coverings and distancing protocols.
4. Agree that each and every access of buildings represents an attestation – that one declares her/himself symptom-free, consent to the opt-in health policy, and agree to comply with all safety measures on and between campuses, both inside and outside buildings.

Staged ramp-up

Currently, the University is operating under “restricted access” criteria, a state in which the overwhelming majority of research is conducted remotely. There are very limited approvals in place for essential personnel to manage critical research and COVID-related activities.

This plan proposes the establishment of a staged-return process with the next stage being defined as “low density (Phases 0-2).” Entry into this stage will include a phased approach:

- **Phase-0: Planning and training.** Develop, review and approve PI/lab-specific plans for return to on-campus research. Train everyone prior to entry onto campus, including those who have been on campus during the restricted access stage.
- **Phase-1: Re-entry of key personnel required to restart research projects.** Includes (i) researchers (e.g., those needed to restart critical equipment, identify supply requirements for lab restart, prepare core
facilities, sustain tissue or cell cultures, and sustain breeding animal colonies) and (ii) key support personnel required to restart critical infrastructure and core facilities.

- **Phase-2: Research and Support.** Includes (i) personnel whose research is ready to start (based on the work completed in Phase-1) and (ii) corresponding support personnel required to be on campus to support researchers in Phase-2.

Subsequent phases of ramp-up will be developed and managed based on the trajectory of the pandemic, University and government guidance, and emerging information and experience gained in the low-density phases. A road map for such subsequent phases will be presented at a later date.

A PI-driven approach, with oversight

The principal investigator (PI) of a research program—with detailed knowledge of workflow, layout, personnel, shared instrumentation, and program priorities—will work with his/her/their research group and departmental administrators to craft a plan to resume a program’s research activities. The research group’s plans will be subject to departmental review. School approval of departmental plans will ensure commonality of principles in implementing approaches across the enterprise and coordination between multiple departments using the same building. *No new work can begin until a lab’s plan receives School and University approval.*

Culture of safety

To safely and successfully open the labs, we must consciously cultivate a culture of **safety**. In occupational health and safety guidance, there are several key elements to building a workplace culture of safety that we incorporate in this effort: (i) communication, (ii) involvement of employees, (iii) training, (iv) leadership by example, and (v) a well-defined reporting process.

With these principles in mind, labs should consider the optimization of their phased re-opening a collective effort guided by the PI, who bears ultimate responsibility for compliance. COVID-19 safety is in a sense a new type of consideration for lab safety but has some similarities to biosafety and radiation safety. For COVID-19 safety, however, we do not have years of experience to draw from and instead must establish new protocols, guided by available evidence and common sense, to begin re-entry back to the labs.

Labs will formulate their draft plans in different ways. In some cases, this will be the work of a few individuals and in some cases many. However, after the plan is developed, every member of the lab should review this plan and raise and discuss concerns. The plan should be revised as necessary in light of this discussion, recognizing that in some cases it may not be feasible to address every concern and that some decisions will need to be made against a backdrop of considerable uncertainty. Early investment by PIs in engaging their entire lab community is critical to defining best solutions, ensuring equity, promoting compliance, and mitigating risk. **All lab members should review plans prior to submission for approval and be informed should there be any changes prior to implementation.**

Rationale and specific guidelines

The goal of this plan is to minimize the risk that the resumption of on-campus lab activity will contribute to the transmission of SARS-CoV-2 within the University and in the broader community. To do this, we must limit physical contact and proximity among people. The University will achieve this in three ways:

- Limiting total person density within the University (where we expect that the target density will be established by both Harvard and the state and local governments based on local conditions),
Establishing space usage guidelines that optimize the distance between people, and
Constraining transmission by having individuals work in shifts.

The specifics of this plan are informed by the current Massachusetts Department of Public Health definition of the type of contact that creates high risk of SARS-CoV-2 transmission and would trigger a quarantine recommendation, recognizing that testing of asymptomatic contacts is not yet available. According to current state guidelines, a high-risk contact is someone who has been in contact with a COVID-19 case for greater than 15 minutes at a distance of 6 feet or less. After this type of contact, an individual would be asked to self-quarantine for 14 days.

We recognize the current uncertainty inherent in this definition and seek to achieve a higher standard of workplace safety than simply the elimination of high-risk contact according to this definition. To do so, we will initially employ the following additional five layers of protection:

- Required self-evaluation for COVID-19 symptoms and attestation as symptom-free for entry,
- Mandatory use of University-issued or -approved protective face coverings—currently defined as surgical masks—while on campus and in buildings,
- Enhanced density and distance requirements,
- Limited physical contacts through shift work,
- Enhanced facilities maintenance and custodial support.

These supplemental layers of protection are designed to maximize safety and to establish a workplace environment in which the state-mandated quarantine standards will be implemented if any COVID-19 cases emerge in our workforce, while still allowing most individuals working in the same area to continue their work. The details of the cleaning protocols and occupational health responses to a case of COVID-19 on campus are described below. A component of the overall strategy is a University-wide Occupational Health Plan that is currently under development.

We plan to assess the efficacy of the described policy by occupational health monitoring for case clusters among individuals who share proximate spaces but do not meet the definition of a close contact. Emergence of a cluster of infections may trigger a broader requirement for quarantine than that mandated by the state and initiate re-evaluation of the lab distancing plan.

As we gain experience or as the SARS-CoV-2 testing landscape evolves, we may find that some of these restrictions can be relaxed or otherwise modified.

Self-evaluation for COVID-19 symptoms
- Individuals will follow the symptom screening protocol defined by EH&S and Occupational Health Services.
- Any individual who uses their ID card to enter a building is making an attestation that they are free of COVID-19 symptoms. Schools are encouraged to adopt an affirmative daily declaration that is submitted electronically.
- Any individual who has had a COVID-19 diagnosis will follow occupational health guidelines for return to work.

Viral and serological testing
- Viral and serological tests for SARS-CoV-2 are increasingly available but not yet at a scale that would support near-universal, frequent screening for asymptomatic infection. The University’s approaches to screening will be modified as testing technologies evolve.

Protective face coverings
- University-approved face masks, initially provided by the institution, will be worn at all times while in campus buildings except when eating or drinking. Face coverings will also be worn outdoors on campus.
• Mask usage (i.e., donning, doffing and storage) will follow the EH&S protocols described in a required training module.
• Any exceptions to the described mask usage policy require approval at the School level.

Density and distance guidelines
• Density targets will conform to state and University guidelines.
• School-specific implementation protocols will be provided separately.
• Work that can successfully be done remotely should continue to be done remotely. For example, typical lab group and 1-1 meetings will continue to be held remotely.
• Workstations will be distanced from one another. CDC recommendations are that individuals maintain a minimal distance of 6 feet from one another, but labs should try to achieve a distance of 9 feet or greater between workstations where feasible. Whenever possible, researchers should be assigned a particular workstation. For shared workstations, only one researcher should work at a given workstation at a time, with disinfection of equipment and surfaces between users.
• Experimental situations that require individuals to work in proximity to one another (<6 feet) will be rare. Such exceptions to the standard distancing guidelines should be clearly outlined in the proposed lab plan and require approval through the School’s processes.
• The position of equipment and a given lab’s workflow will dictate the final plan. If significant deviations from the recommended distance requirements are proposed, they should be called out for discussion during review.
• Desk seating for individuals should be separated by at least 6 feet and ideally 9 feet or greater.
 o In general, time in lab should be dedicated to experimental and/or computational work that cannot be done remotely. Other activities like analyzing data, reading, writing and meeting with lab members should continue to be done remotely.
 o Use of shared offices is discouraged and efforts should be made to maximize a floor’s office space capacity (e.g., administrative offices and faculty not in use) to provide well distanced, pre-defined places to sit during experimental downtimes.
• Lab plans should identify places for individuals to eat and drink separately from others.
• If sharing space is unavoidable, seats should be separated by a minimal distance of 6 feet and ideally 9 feet or greater.

Constraint of social contacts through shift work
For almost all labs, shift work will be an important component of low-density phased re-entry planning, independent of distancing. Fixed shift teams limit the size of any given person’s potential interactions over time and serves as a buffering function that distance alone does not accomplish. Fixing shift teams – at least in the earliest phase of reopening – functionally limits the number of people in the lab who would potentially be at risk for infection as well as the number who may need to be quarantined should a lab cluster emerge. If a shift team is not fixed, then there is higher likelihood that everyone in a lab would interact at some point over a given infectious period, and if a lab cluster emerges, the whole lab would be at risk for infection and may need to be quarantined. Where multiple labs share space, it is important to get a consensus across all users on the appropriate model.

Shift schedules should be developed that are consistent with the following guiding principles:
• All researchers and workers should be informed of safety measures that are being taken, due consideration given to concerns that are raised, and, where appropriate, reasonable accommodations made. Any issues related to an individual’s return to work should be discussed on a case-by-case basis with the PI, in consultation with department administrators and Occupational Health Services.
• Everyone who is coming into labs should be familiar with the plans, safety procedures, and guidelines and should know who to contact if there are concerns.
• The ability to participate in lab research should be granted in accordance with all applicable University policies and regulations, including non-discrimination.
Below, three different shift models are described; other models may be developed as well. The most appropriate model will depend on a lab’s work and space layout (e.g., need to access animals, experimental duration) and staff preference. It is important to note at the outset that inevitably people will have experiments that extend past the boundaries of their shifts. However, shift teams should be considered fixed until we better understand workplace transmission risk. Thus, for some labs, this will necessarily change how projects are structured. Implementing shift work may necessitate more team science and, if prolonged, could durably alter how we conduct research. The mechanism by which shifts are assigned are not defined, but considerations should include lab members’ transportation options, childcare responsibilities, and the ability of operations in a given site to support the designated shift hours. At the current time, campus buildings will be open for low-density shift work by researchers seven days a week with hours designated at the School level.

Shift model A – divide the day
The day is divided into two shifts. Every lab member is assigned to an AM or PM shift. Individuals can only come in during their shift. Two 4-hour shifts may not be realistic for many labs. Time windows that allow closer to 8 hours per shift (e.g., 6:00 AM – 1:00 PM—lab does wipe down on exit; 2:00 PM – 10:00 PM—lab does wipe down on exit) may be possible but should address the operation’s ability to support extended hours and accommodate any lab member. Plans should include a time buffer to ensure shift changes occur without cross-contact.

Shift model B - divide the week
The week is divided into two shifts. The easiest division to imagine is MonWedFri/ TueThuSatSun but other divisions are possible (Sun – Wed and Thu – Sat). This allows longer workdays for experiments that are not easily accomplished in 4- to 6-hour blocks. There is less daily concern about (and friction over) overlap. However, some people would always be working on the weekends.

Shift model C - somewhat longer blocks
A 15-day period could be divided into three blocks. Lab personnel (or physically proximate groups) are divided into three pods. Pod A works on campus the first 5 days and then works remotely for the next 10 days. Pod B works remotely the first 5 days, on campus the next 5 days, and then remotely the last 5 days. Pod C works remotely the first 10 day and then on campus for the last 5 days. That ends a 15-day period. This strategy is designed to even more strictly isolate work units.

Enhanced facilities maintenance
Schools will optimize operational protocols to minimize SARS-CoV-2 transmission risk, including:

- An entry/exit and common space management plan
- Protocols and training for outside vendors, contractors and visitors
- Protocols and training for daily cleaning of lab and office spaces by researchers
- Enhanced cleaning protocols for common spaces including bathrooms
- Specific bathroom, elevator and kitchen protocols to minimize shared occupancy and increase opportunities for surface decontamination
- Optimization of HVAC performance to maximize air exchange and enhancement of filtration where feasible
- Additional modifications to physical environment to minimize surface contact.

Compliance
It is expected that every member of the Harvard community will comply with the safety principles described above. However, building deep familiarity with safety protocols will take time and mistakes will happen. Establishing a culture of safety requires a nonpunitive system for reporting and addressing concerns, in keeping with University policies protecting good faith reporting of suspected violations of law or Harvard policy. PIs are ultimately accountable for the safe conduct of work within their labs.
• Every lab will identify a **COVID-19 safety officer** who may be the existing lab safety officer. This individual will serve as a reference for lab members and as a point of contact for the School.

• Each School will establish a **COVID-19 oversight team**. This team will review changes in individual lab plans and institutional guidance, monitor compliance, and collect and provide information relevant to any changes in policies or procedures to COVID-19 safety officers and PIs.

• Lab COVID-19 safety officers will meet regularly as a group with the respective School COVID-19 oversight structure to discuss best practices, identify deficiencies, and receive relevant information to communicate back to lab members.

• Deficiencies may also be brought directly to the attention of the PI, department or area chair, School, and University.

• The COVID-19 oversight team will work with the appropriate department or area chair to establish appropriate corrective action in case of infractions. First responses may include education, retraining, or reconsideration/modification of the lab re-entry plan.

• Repeated infractions or willful non-compliance may result in revocation of an individual’s or an entire lab’s ability to work on campus.

Note: The School COVID-19 oversight teams are strongly encouraged to report their findings to their representative(s) on the University Laboratory Reopening Planning Committee so that their experiences and enhancements can be shared with the broader Harvard research community.

Occupational Health Services (in development)

• Individuals working on campus must comply with the program overseen by Occupational Health Services, which will direct individuals to testing and retraining when appropriate and monitor School-wide data for possible clusters of infection in campus buildings.

• Any instances of symptoms, exposure, or a positive test will be disclosed to Occupational Health Services.

• Individuals will comply with isolation and quarantine policies established by the Commonwealth of Massachusetts and the University.

• These guidelines are subject to change pending development in availability of viral and serological testing and/or changes in state guidelines.
Appendix 1:

Harvard University Laboratory Reopening Planning Committee

Richard McCullough (Chair)
Vice Provost for Research, Harvard University; and Professor of Materials Science and Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences

Paul J. Anderson
Senior Vice President, Research and Education and Chief Academic Officer, Brigham and Women’s Hospital; K. Frank Austen Professor of Medicine, Harvard Medical School

Ayis Antoniou
Administrative Director, Wyss Institute for Biologically Inspired Engineering at Harvard University

Stephen Blacklow
Gustavus Adolphus Pféiffer Professor of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School; Chair, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School; Professor, Department of Cancer Biology, Dana-Farber Cancer Institute

Frank J. Doyle
John A. Paulson Dean of the Harvard John A. Paulson School of Engineering and Applied Sciences and John A. and Elizabeth S. Armstrong Professor of Engineering and Applied Sciences

Sarah Fortune
John LaPorte Given Professor of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health; Chair, Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health; Director, TB Research Program at the Ragon Institute of MGH, MIT and Harvard

Kenneth Freedberg
Director, Medical Practice Evaluation Center, Massachusetts General Hospital; Professor of Medicine, Harvard Medical School

Javier Guzman
Deputy General Counsel, Harvard University

William Hahn
Chief Scientific Officer, Dana-Farber Cancer Institute; William Rosenberg Professor of Medicine, Harvard Medical School

Laura Maliszewski
Executive Director of the Harvard Program in Therapeutic Science and the Laboratory of Systems Pharmacology, Co-Director of the Harvard-MIT Center for Regulatory Science, and Lecturer on Systems Biology, Harvard Medical School

Harry Orf
Senior Vice President for Research, Massachusetts General Hospital; Principal Associate in Genetics, Harvard Medical School
Christopher Stubbs Dean of Science, Harvard University Faculty of Arts and Sciences; Samuel C. Moncher Professor of Physics and of Astronomy, Harvard University Faculty of Arts and Sciences

Gyongyi Szabo Chief Academic Officer, Beth Israel Deaconess Medical Center and Beth Israel Lahey Health; Faculty Dean for Academic Affairs, Harvard Medical School; Mitchell T. Rabkin, M.D. Chair, Harvard Medical School

Ara Tahmassian University Chief Research Compliance Officer, Harvard University

Ravi Thadhani Chief Academic Officer, Partners Healthcare; Professor of Medicine, Harvard Medical School and Massachusetts General Hospital; Dean for Academic Programs at Partners Healthcare, Harvard Medical School

Bill VanSchalkwyk Managing Director of Environmental Health & Safety, Harvard University Campus Services

Amy Wagers Co-chair, Harvard Department of Stem Cell and Regenerative Biology; Forst Family Professor of Stem Cell and Regenerative Biology, Harvard University Faculty of Arts and Sciences and Harvard Medical School; Senior Investigator in the Section on Islet Cell and Regenerative Biology at the Joslin Diabetes Center

Conor Walsh Paul A. Maeder Professor of Engineering and Applied Sciences, Harvard John A. Paulson School of Engineering and Applied Sciences; Core Faculty Member, Wyss Institute for Biologically Inspired Engineering at Harvard University

Malcolm Whitman Professor of Developmental Biology and Associate Dean for Basic Science Research, Harvard School of Dental Medicine

David Williams Senior Vice President and Chief Scientific Officer, Boston Children’s Hospital; Leland Fikes Professor of Pediatrics, Harvard Medical School; Chief, Division of Hematology/Oncology, Boston Children’s Hospital; Associate Chair, Department of Pediatric Oncology, Dana-Farber Cancer Institute

HMS/HSDM/Harvard Chan School Laboratory Ramp-Up Committee

Clifford Tabin Chair of Genetics, Blavatnik Institute, HMS

Julie Huang Director of Research Administration for Cell Biology, Blavatnik Institute, HMS

Stephen Blacklow Chair of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, HMS

Sarah Boswell Senior Scientist in the Laboratory of Systems Pharmacology, Systems Biology & Director of the Single Cell Core, HMS

Brian Corning Executive Director of Harvard Center for Comparative Medicine, HMS
Carl Cowan Assistant Director of Emergency Management, HMS

Sarah Fortune John LaPorte Given Professor of Immunology and Infectious Diseases, Harvard Chan School

Stephen Maiorisi Chief Campus Planning and Facilities Officer, HMS

Laura Maliszewski Executive Director of the Harvard Program in Therapeutic Science and the Laboratory of Systems Pharmacology, HMS

Jennifer Ryan Chief of Staff, Dean’s Office, HMS

Christine Seidman Thomas W. Smith Professor of Medicine, HMS and BWH

Amy Wagers Co-chair of Stem Cell and Regenerative Biology, HMS/FAS

Malcolm Whitman Professor of Developmental Biology, Associate Dean for Basic Research, HSDM
Appendix 2:

References and Helpful Resources

The following websites were consulted in drafting the Plan and are provided here as reference material

2. OSHA COVID-19 Website: https://www.osha.gov/SLTC/covid-19/controlprevention.html

4. ABSA SARS-CoV-2/COVID-19 TOOLBOX: https://absa.org/covid19toolbox/

7. EPA- List N: Disinfectants for Use Against SARS-CoV-2: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2

Appendix 3:

University Principal Investigator Lab Re-entry List Example

The process

☐ Personally complete any required EH&S training and consent modules.
☐ Designate lab COVID-19 safety officer.
☐ Develop lab staffing and usage plans per guidance below.
☐ Review plans with lab and revise as necessary based on feedback.
☐ Submit for review by department and Dean’s office.
☐ Share requirement that all lab members complete required EH&S training prior to reentry.
☐ Make any local adjustments to plan based on departmental and decanal review.
☐ Receive plan approval (end of Phase-0).
☐ Key personnel initiate space and workflow modifications as outlined in plan (Phase-1).
☐ Await notification on timing of research ramp-up (beginning of Phase-2).

Laboratory layout and configuration

☐ Review the layout of benches, workstations, and devices within the laboratory.
☐ Take full advantage of all real estate within the laboratory.
☐ Designate specific workstations on laboratory benches, with maximum physical separation of at least 6 feet apart and ideally 9 feet or greater, minimizing the need for individuals to pass frequently by one another. In most laboratory spaces, this will limit occupancy to 1 person per bay, although certain laboratory layouts may be permissive for different levels of occupancy. Such instances should be justified in the proposed lab plan and will be reviewed.
☐ When possible, relocate shared instruments to minimize “embedding” in bays and increase personnel separation.
☐ Identify and define usage plans and scheduling procedures for common lab spaces such as tissue culture and microscopy rooms.
☐ Working with your departmental leadership, identify and designate any available common and office space for eating to maintain appropriate social distancing.

Staffing plan

☐ Determine on-site personnel, factoring in considerations such as:
 o individual career needs and timelines
 o ability to perform work remotely
 o ability to commute to campus safely
 o ability to obtain childcare
 o personal health concerns (e.g., underlying health conditions, risk to household members)
 o grant funding regulations
- coordination with neighboring labs on open floors as needed
- capacity of core facilities to support projected research

☐ Establish a shift plan that distributes available laboratory workspaces across personnel.
 - Ability to participate in laboratory research should be granted in accordance with all applicable University policies and regulations, including non-discrimination.
 - Define shift plan and other relevant arrangements for laboratory usage.

☐ Consider a booking system for the use of common equipment.

Office spaces

☐ Review desk assignments.
☐ Define desk usage that allows at least 6 feet, and ideally 9 feet, of distancing.
☐ Define occupancy limits for shared office spaces.

Administrative support

☐ Alert administrators to evolving group needs and expectations.
☐ Consider and/or set up online calendar and work scheduling tools.

Operational Procedures

☐ Regularly disinfect high touch surfaces (e.g., door handles, washbasin handles, drawer handles, or common equipment such as workstations) before and after use.
☐ Restrict guests to only essential visitors such as contractors and vendors.
Appendix 4:

University PI Lab Re-Occupancy Planning Form

<table>
<thead>
<tr>
<th>Faculty/PI Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (Last, First)</td>
<td></td>
</tr>
<tr>
<td>HUID</td>
<td></td>
</tr>
<tr>
<td>Department(s)</td>
<td></td>
</tr>
<tr>
<td>Email Address</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Building(s)</td>
<td></td>
</tr>
<tr>
<td>Room Numbers</td>
<td></td>
</tr>
<tr>
<td>Core Facilities or other units</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab COVID-19 Safety Officer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Phone number</td>
<td></td>
</tr>
<tr>
<td>Email address</td>
<td></td>
</tr>
</tbody>
</table>
Key Personnel who will prepare the lab for re-entry (Phase-1)

<table>
<thead>
<tr>
<th>Name</th>
<th>HUID</th>
<th>Position/Appt Type</th>
<th>Email Address</th>
<th>Cell Phone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard, John</td>
<td>12345678</td>
<td>G4 Student</td>
<td>johnharvard@harvard.edu</td>
<td>617-555-5454</td>
</tr>
</tbody>
</table>
Lab Personnel (Phase-2)
Identify all personnel who will be performing research or essential services on campus. Those who can continue to work remotely should do so.

<table>
<thead>
<tr>
<th>Name (Last, First)</th>
<th>HUID</th>
<th>Position/Appt Type</th>
<th>Email Address</th>
<th>Cell Phone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard, John</td>
<td>12345678</td>
<td>G4 Student</td>
<td>johnharvard@harvard.edu</td>
<td>617-555-5454</td>
</tr>
</tbody>
</table>
Lab Schedule

Provide the frequency and duration of work on campus for each lab member. Membership should not overlap across different shift teams.

<table>
<thead>
<tr>
<th>Shift</th>
<th>Proposed Work/ Access Times</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift team 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift team 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shared Research Space Use

(1) Identify procedure rooms, equipment rooms, tissue culture rooms, microscopy suites, environmental rooms, autoclave and glass washing facilities, etc. Describe distancing plan for these spaces.

(2) Identify facilities/spaces shared by groups outside your lab which may need centralized scheduling system to be coordinated by department or School.

(3) Please list anticipated Core Facility usage here. We expect that Core Facilities will be establishing independent scheduling systems.
Shared Office Needs
To the extent possible, all planning and analysis should take place off campus to limit the amount of time lab members spend on campus. If your laboratory has a common desk area outside the laboratory, please note that below and estimate its use per person.

Ancillary Space Considerations & Schedule
Please identify common areas that will be reserved as designated places for meals as assigned by your lab or department.

For Admin Use

<table>
<thead>
<tr>
<th>Department Chair(s) Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Approval</td>
</tr>
</tbody>
</table>
Appendix 5:

Guidance for Human Subject Research (draft, under review by faculty groups)

The following guidance was developed by the Harvard Institutional Review Boards (IRB) from the Harvard University Area and the Harvard Longwood Medical Area to assist the research community with the preparation for research studies that involve in-person interactions with study subjects.

I. Considerations prior to initiating in-person interaction with study subjects

- To reduce interaction time, is it possible for some study visit procedures to be completed via telephone, online, or virtually?
- Is it possible for some study visits to be completed at the subject’s local clinical lab, clinical office, or imaging center? For example, can the procedures occur in the context of a needed clinical care visit and/or through interaction with only the clinical care providers the participant would see even if not participating in the research?
- Modify the timing and scope of specific study visits to account for essential versus non-essential study procedures.
- Consider the study population and whether the research aims/questions could be sufficiently addressed without recruiting those at greatest risk for COVID-19.
- Identify applicable requirements or restrictions that have been or may be put into place at a national, regional, organizational or facility level and how these may impact the research (e.g., travel restrictions, school closings, remote work mandates).
- Be mindful of current federal, state, local, and institutional restrictions and guidelines.
- Familiarize yourself with the prevalence of COVID-19 at the location of the research and the risk of exposure both due to geographical location and the facility types (e.g., hospitals, clinics, schools).

II. Prior to interaction with study subjects

Restrictions

- Restrict study visits to essential individuals.
 - Study visits should be restricted to only those who are essential. This would include legal guardians or legally authorized representatives who must be present with the participant for health care and/or research-related decisions. In addition, only the study team members necessary to carry out the research activities should be present.
 - Consider using video conversations with individuals in different rooms/locations.
 - Limit the number of people present in the area at any given time. This may involve creating a schedule for study team members, using multiple rooms for study visits, waiting areas, etc.

Screening

- Study Team: All study team member that will be present in the lab space and/or that may come in contact with study subjects, should be screened (see screening questions below).
- Study Subjects: Study participants should be contacted and screened at least 24 hours prior to the study visit (see screening questions below).

Preparing Study Subjects for the Visit

- Develop a Script for Participants: Research teams should consider developing a script outlining for research participants:
 - How the institution is making the environment as safe as possible when they come in for their research visit.
To advise patients to check their temperature at home before leaving for their study visit and that they should put on a cloth face covering, regardless of symptoms, before leaving their home.

If there are special procedures for visitors (e.g., parking, building access, or location change).

Preparing the Study Visit Area
- Clean and Disinfect study lab/visit space.
 - Space utilized for study visits should be cleaned and disinfected daily as well as in between each participant study visit and after all visits are completed for the day.
- Have Personal Protective Equipment available for study subjects (which may include university-provided face masks, latex gloves, and hand sanitizer).
- This may include facemasks, latex gloves, and hand sanitizer.

During the Visit
- Screen all study participants upon entry (see screening questions below)
- If study participants are not already wearing a cloth face covering, provide a facemask.
- If possible, study staff and participant should remain at a safe distance. Remain two meters apart or use a glass barrier to separate study staff and participant.
- Use Personal Protective Equipment, especially if the study protocol prevents safe distancing.
 - All present individuals should consider using appropriate face coverings for the duration of the study visit.
 - All present individuals should consider using latex gloves for the duration of the study visit.

After the Study Visit
- Clean and Disinfect study lab/visit space.
 - Space utilized for study visits should be cleaned and disinfected daily as well as in between each participant study visit and after all visits are completed for the day.
- Ensure that stock of Personal Protective Equipment is replenished.
 - This may include face masks, latex gloves, and hand sanitizer.

Screening Questions
- In the past 14 days, have you traveled outside of the United States?
- In the past 14 days, have you traveled within the United States?
- In the past 14 days, have you had any of the following symptoms?
 - Fever
 - Cough
 - Shortness of breath
- In the past 14 days, have you lived with, visited, cared for, or been in a room for a prolonged period of time with someone who is under investigation for or has been confirmed for COVID-19?

If the participant answers “yes” to any of the above screening questions, the study staff member should cancel the study visit and request that the individual seek immediate medical assistance.

For more information, contact your Harvard IRB:
- Harvard University Area IRB at https://cuhs.harvard.edu/
- Harvard Longwood Medical Area IRB at https://www.hsph.harvard.edu/ohra/